Safety and efficiency conflicts in hydraulic architecture: scaling from tissues to trees.
نویسندگان
چکیده
Tree hydraulic architecture exhibits patterns that propagate from tissue to tree scales. A challenge is to make sense of these patterns in terms of trade-offs and adaptations. The universal trend for conduits per area to decrease with increasing conduit diameter below the theoretical packing limit may reflect the compromise between maximizing the area for conduction versus mechanical support and storage. Variation in conduit diameter may have two complementary influences: one being compromises between efficiency and safety and the other being that conduit tapering within a tree maximizes conductance per growth investment. Area-preserving branching may be a mechanical constraint, preventing otherwise more efficient top-heavy trees. In combination, these trends beget another: trees have more, narrower conduits moving from trunks to terminal branches. This pattern: (1) increases the efficiency of tree water conduction; (2) minimizes (but does not eliminate) any hydraulic limitation on the productivity or tissue growth with tree height; and (3) is consistent with the scaling of tree conductance and sap flow with size. We find no hydraulic reason why tree height should scale with a basal diameter to the two-thirds power as recently claimed; it is probably another mechanical constraint as originally proposed. The buffering effect of capacitance on the magnitude of transpiration-induced xylem tension appears to be coupled to cavitation resistance, possibly alleviating safety versus efficiency trade-offs.
منابع مشابه
Summary I conducted a literature survey to assess the avail- able information on relationships between size—expressed in terms of diameter and dry biomass—and hydraulic efficiency of woody structures at different scales, from stem segments
able information on relationships between size—expressed in terms of diameter and dry biomass—and hydraulic efficiency of woody structures at different scales, from stem segments to whole trees. Three data sets were constructed: the first described the relationship between segment diameter and hydraulic conductivity (kh; kg m s –1 MPa) in four species; the second, for the same four species, des...
متن کاملHydraulic efficiency and safety of vascular and non-vascular components in Pinus pinaster leaves.
Leaves, the distal section of the soil-plant-atmosphere continuum, exhibit the lowest water potentials in a plant. In contrast to angiosperm leaves, knowledge of the hydraulic architecture of conifer needles is scant. We investigated the hydraulic efficiency and safety of Pinus pinaster needles, comparing different techniques. The xylem hydraulic conductivity (k(s)) and embolism vulnerability (...
متن کاملHow adaptable is the hydraulic system of European beech in the face of climate change-related precipitation reduction?
Climate warming will increase the drought exposure of many forests world-wide. It is not well understood how trees adapt their hydraulic architecture to a long-term decrease in water availability. We examined 23 traits characterizing the hydraulic architecture and growth rate of branches and the dependent foliage of mature European beech (Fagus sylvatica) trees along a precipitation gradient (8...
متن کاملHydraulic efficiency and safety of leader shoots and twigs in Norway spruce growing at the alpine timberline.
Xylem within trees varies in its hydraulic efficiency and safety. Trees at the alpine timberline were expected to exhibit a hydraulic architecture protecting the leader shoot from winter embolism. Hydraulic and related anatomical parameters were compared as well as seasonal courses of winter embolism in leader shoots and twigs of Norway spruce trees growing at 2000 m. Leader shoots had a 1.4-fo...
متن کاملHydraulic trade-offs and space filling enable better predictions of vascular structure and function in plants.
Plant vascular networks are central to botanical form, function, and diversity. Here, we develop a theory for plant network scaling that is based on optimal space filling by the vascular system along with trade-offs between hydraulic safety and efficiency. Including these evolutionary drivers leads to predictions for sap flow, the taper of the radii of xylem conduits from trunk to terminal twig...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Plant, cell & environment
دوره 31 5 شماره
صفحات -
تاریخ انتشار 2008